Hybrid MPPT Method for Controlling an Open-Channel Hydrokinetic Microgenerator in Grid-Connected Mode

Edigar Nunes de Siqueira Júnior, Luigi Galotto Junior, Moacyr Aureliano Gomes de Brito

Abstract


Hydrokinetic energy conversion has been gaining prominence among renewable energy sources due to its reasonable predictability and low environmental impact. In this context, this paper proposes the development of a maximum power point tracking (MPPT) algorithm for controlling a 10-kW hydrokinetic microgenerator in grid-connected mode. To maximize energy capture and ensure operational reliability, the strategy employs a hybrid process that uses the fixed-step “perturb and observe” (P&O) method to fine-tune the search within the high-efficiency region, established based on the unit’s V–P (voltage–power) curve scan. The power stage consists of an in-stream turbine, a permanent magnet synchronous generator (PMSG), an uncontrolled rectifier, and a voltage source inverter. The control stage integrates the MPPT subsystem, along with a DC-link voltage regulator, output current compensators, phase-locked loops (PLLs), an islanding detector, and pulse width modulation (PWM) devices. The technique was validated using a simulation-based approach on the MATLAB/Simulink® platform, achieving an average tracking factor (TF) of 96.21% under varying flow conditions. Comparative results suggest that the algorithm makes the controller robust to small changes in plant parameters, such as those from mechanical wear, as the tolerance of the characteristic curve effectively mitigates their impact on the conversion rate.

Keywords


distributed generation; hydrokinetic conversion; islanding detection; MPPT technique

Full Text:

PDF

References


M. Sood and S. K. Singal, “Development of hydrokinetic energy technology: A review,” Int J Energy Res, vol. 43, no. 11, pp. 5552–5571, Apr. 2019. DOI: 10.1002/er.4529

M. Ridgill, M. J. Lewis, P. E. Robins, S. D. Patil, and S. P. Neill, “Hydrokinetic energy conversion: A global riverine perspective,” J. Renewable Sustainable Energy, vol. 14, no. 4, 044501, pp. 1–17, July 2022. DOI: 10.1063/5.0092215

H. J. Vermaak, K. Kusakana, and S. P. Koko, “Status of micro-hydrokinetic river technology in rural applications: A review of literature,” Renew. Sustain. Energy Rev., vol. 29, pp. 625–633, Jan. 2014. DOI: 10.1016/j.rser.2013.08.066

M. J. Khan, M. T. Iqbal, and J. E. Quaicoe, “River current energy conversion systems: Progress, prospects and challenges,” Renew. Sustain. Energy Rev., vol. 12, no. 8, pp. 2177–2193, Oct. 2008. DOI: 10.1016/j.rser.2007.04.016

R. Pudur and S. Gao, “Savonius rotor based grid connected hydrokinetic power generation scheme,” SEGAN, vol. 5, pp. 148–155, Mar. 2016. DOI: 10.1016/j.segan.2015.12.004

C. M. Niebuhr, M. van Dijk, V. S. Neary, and J. N. Bhagwan, “A review of hydrokinetic turbines and enhancement techniques for canal installations: Technology, applicability and potential,” Renew. Sustain. Energy Rev., vol. 113, 109240, pp. 1–18, Oct. 2019. DOI: 10.1016/j.rser.2019.06.047

M. Ridgill, S. P. Neill, M. J. Lewis, P. E. Robins, and S. D. Patil, “Global riverine theoretical hydrokinetic resource assessment,” Renewable Energy, vol. 174, pp. 654–665, Aug. 2021. DOI: 10.1016/j.renene.2021.04.109

L. Cacciali, L. Battisti, S. Dell’Anna, and G. Soraperra, “Case study of a cross-flow hydrokinetic turbine in a narrow prismatic canal,” Ocean Engineering, vol. 234, 109281, pp. 1–10, Aug. 2021. DOI: 10.1016/j.oceaneng.2021.109281

M. H. Ashourianjozdani, L. A. C. Lopes, and P. Pillay, “Power control strategy for fixed-pitch PMSG-based hydrokinetic turbine,” in 2016 IEEE International Conference on PEDES, Trivandrum, India, Dez. 14-17, 2016, pp. 1–6. DOI: 10.1109/PEDES.2016.7914245

P. B. Ngancha, K. Kusakana, and E. Markus, “Modelling and simulation of a power converter for variable speed hydrokinetic systems,” in 2017 International Conference on the DUE, Cape Town, South Africa, Apr. 4-5, 2017, pp. 227–232. DOI: 10.23919/DUE.2017.7931848

F. A. M. Vásquez, T. F. de Oliveira, and A. C. P. Brasil Junior, “On the electromechanical behavior of hydrokinetic turbines,” Energy Conversion and Management, vol. 115, pp. 60–70, May 2016. DOI: 10.1016/j.enconman.2016.02.039

B. Kirke, “Hydrokinetic turbines for moderate sized rivers,” Energy for Sustainable Development, vol. 58, pp. 182–195, Oct. 2020. DOI: 10.1016/j.esd.2020.08.003

P. C. Krause, O. Wasynczuk, and S. D. Pekarek, Electromechanical Motion Devices, 2nd ed. New Jersey: John Wiley & Sons, Inc., 2012.

R. G. Jordão, Synchronous Machines, 2. ed. Rio de Janeiro: LTC, 2013.

I. Boldea, Synchronous Generators. Boca Raton: CRC Press, 2006.

C. B. Albuquerque and F. A. M. Vásquez, “Modeling and control of isolated modular hydrokinetic energy systems,” in 2021 WCNPS, Brasilia, Brazil, Nov. 18-19, 2021, pp. 1–6. DOI: 10.1109/WCNPS53648.2021.9626272

M. A. R. Shafei, D. K. Ibrahim, E. E. -D. A. El-Zahab, and M. A. A. Younes, “Biogeography-based optimization technique for maximum power tracking of hydrokinetic turbines,” in 2014 ICRERA, Milwaukee, WI, USA, Oct. 19-22, 2014, pp. 789–794. DOI: 10.1109/ICRERA.2014.7016493

M. Wise, M. Al-Badri, B. Loeffler, and J. Kasper, “A novel vertically oscillating hydrokinetic energy harvester,” in 2021 IEEE Conference on SusTech, Irvine, CA, USA, Apr. 22-24, 2021, pp. 1-8. DOI: 10.1109/SusTech51236.2021.9467425

R. -A. Chihaia, I. Vasile, G. Cîrciumaru, S. Nicolaie, E. Tudor, and C. Dumitru, “Improving the energy conversion efficiency for hydrokinetic turbines using MPPT controller,” Appl. Sci., vol. 10, no. 21, 7560, pp. 1–13, Oct. 2020. DOI: 10.3390/app10217560

J. C. O. de S. Lescano, L. Galotto Junior, H. C. S. Souza, T. Estrabis, G. Gentil, and R. Cordero, “Modeling and simulation of a hydrokinetic generation connected to the electricity grid,” in XXIV CBA 2022, Fortaleza, Brazil, Oct. 16-19, 2022, pp. 1466–1473. DOI: 10.20906/CBA2022/3374




DOI: http://dx.doi.org/10.5281/zenodo.17624428

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Edigar Nunes de Siqueira Júnior, Luigi Galotto Junior, Moacyr Aureliano Gomes de Brito

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.