Prediction of Probabilistic Transient Stability Using Support Vector Machine

Umair Shahzad

Abstract—Transient stability assessment is an integral part of dynamic security assessment of power systems. Traditional methods of transient stability assessment, such as time domain simulation approach and direct methods, are appropriate for offline studies and thus, cannot be applied for online transient stability prediction, which is a major requirement in modern power systems. This motivated the need for an artificial intelligence-based approach. In this regard, supervised machine learning is beneficial for predicting transient stability status, in the presence of uncertainties. Therefore, this paper examines the application of a binary support vector machine-based supervised machine learning, for predicting the transient stability status of a power system, considering uncertainties of various factors, such as load, faulted line, fault type, fault location and fault clearing time. The support vector machine is trained using a Gaussian Radial Basis function kernel and its hyperparameters are optimized using Bayesian optimization. Results obtained for the IEEE 14-bus test system demonstrated that the proposed method offers a fast technique for probabilistic transient stability status prediction, with an excellent accuracy. DlgSILENT PowerFactory and MATLAB was utilized for transient stability time-domain simulations (for obtaining training data for support vector machine) and for applying support vector machine, respectively.

Index Terms—Artificial Intelligence (AI), dynamic security assessment (DSA), machine learning, probabilistic transient stability, support vector machine (SVM).

I. INTRODUCTION

The reliability of a power system is defined as the ability of the power system to provide electric energy to consumers on a continuous basis and with acceptable service quality, for both planned and unplanned outages [1]. One of the main requirements to maintain the reliability of the power system is to continually operate the synchronous generators and with satisfactory capacity to satisfy the load. In the domain of power system stability, transient stability is the ability of the synchronous machines to remain in synchronism during few seconds (usually 5-10 seconds), after a large disturbance, such as a short circuit fault, occurs [2]. In addition to fault type, fault location, system inertia, and system load, fault clearing time (FCT) and critical clearing time (CCT) are significant parameters in assessing transient stability [3]. FCT is the time at which fault is cleared after fault occurrence, whereas CCT is the maximum FCT after which the system becomes transiently unstable [3]. Transient stability is an integral component of dynamic security assessment (DSA). DSA deals with evaluation of transient performance of the system after the occurrence of contingency [2]. To evaluate the transient stability status, time-domain simulation approach is generally used to solve a set of nonlinear differential-algebraic equations, which represent the dynamics of the network [4]. Although, the time-domain approach is the most accurate method and usually yields promising results, it is time consuming, as it must traverse a set of differential-algebraic equations, which can be computationally intensive, especially for large-scale systems [5]. The transient energy function (TEF) method [6]-[7], and the extended equal area criterion (EEAC) [8] have also been applied to transient stability evaluation; however, these approaches have some restrictions regarding modeling, and they require many computations to evaluate an index for transient stability status [9]. Moreover, these methods are not appropriate for online transient stability prediction [10].

Conventionally, deterministic methods, employing worst-case scenarios (seasonal peak load, three-phase fault, etc.), have been used to evaluate transient stability [11]-[13]. These approaches are very conservative and ignore the probability of various input parameters linked with transient stability, such as load, fault type, fault location, etc. With the continuous integration of renewable generation, the increasing prevalence of competitive electricity market, and the rising uncertainties in the power system, these conventional methods are becoming obsolete and unsuitable. Compared with the deterministic assessment approaches, probabilistic assessment techniques can provide an inclusive and realistic measure of system stability status [14]. Novel probabilistic assessment techniques are desirable and are being established. Probabilistic transient stability (PTS) assessment has been recognized to be a fitting approach to analyze the effect of uncertain parameters on transient stability [15]-[21]. Additionally, the results from PTS analysis can be associated with risk assessment, which is imperative for system operators, as economic and technical reasons can result in the power system to operate near the stability limit [21]. Although, it has been long established that deterministic studies may not sufficiently characterize the full extent of system dynamic behavior, the probabilistic approach has not been extensively used in the past in power system studies.
mainly due to lack of data, limitation of computational resources, limited commercial softwares for probabilistic analysis, deterministic nature of standards enforced by regulatory authorities, such as North American Electric Reliability Corporation (NERC), and mixed response from power utilities and planners [17], [20]. However, in recent times, there has been some research in PTS. For instance, [22] presented an analytical approach to determine PTS for online applications. [23]-[24] used Monte-Carlo Simulation (MCS) approach to present a stochastic-based approach to assess the PTS index. [15] proposed the inclusion of probabilistic considerations in transient stability investigation of a multimachine practical power system. Some other relevant work can be found in [25]-[30]. A major drawback of these works is that these use conventional numerical and analytical methods, such as, MCS, time-domain simulation, EEAC, TEF, hybrid method, etc. to estimate the transient stability index. These approaches may be suitable for an offline study, however, for real-time online prediction, a faster method is required. Artificial intelligence (AI)-based approaches provide a good alternative to fulfill this vital objective.

Among various AI approaches, Machine learning (ML) is an upcoming approach for solving power system problems, including transient stability [31]-[33]. ML is generally classified into three categories: supervised, unsupervised and reinforcement [34]. In supervised learning, the goal is to learn a mapping relation between the inputs to outputs, based on a given a labeled set of input/output pairs. Unsupervised learning deals with the training of an algorithm is using unlabeled data so that the algorithm may group the data based on similarity or difference. In reinforcement learning (RL), there is an interaction of an agent with its environment and consequently, the agent adapts its course, based on the reward because of its actions. The focus of this research work is Supervised Machine Learning (SML). Although, SML has various types [35], such as Artificial Neural Network (ANN), Decision Tree (DT), Random Forest, Support Vector Machine (SVM), etc., this work focuses on SVM-based SML for prediction of PTS.

In recent years, application of ML algorithms, such as ANN, to power system is an area of rising interest; the chief reason being the ability of ANN to process and learn intricate nonlinear relations [36]. Although ANN is the most commonly used ML method for transient stability classification, it generally requires an extensive training process and an intricate design procedure. Moreover, ANN usually performs well for interpolation but not so well for extrapolation, which reduces its generalization ability. They are more susceptible to becoming trapped in a local minimum. Although, majority of ML algorithms can overfit if there is a dearth of training samples, but ANNs can also overfit if training goes on for a very long duration [37]. Due to these downsides, it becomes essential to develop a more efficient classifier for transient stability status prediction. SVM do not suffer from these drawbacks and has the following advantages, over ANN [38]: (1) less number of tuning parameters, (2) less susceptibility to overfitting, and (3) the complexity is dependent on number of support vectors (SVs) rather than dimensionality of transformed input space.

Support vector machine (SVM) is an evolving ML approach that incapacitates some of the drawbacks of ANN. A SVM essentially is a SML algorithm that can use given data to solve certain problems by trying to convert them into linearly separable problems. Recently, SVM has been applied to power system transient stability classification problem. An SVM-based transient stability classifier was trained in [39] and its performance was compared with a multilayer perceptron (MLP) classifier. Reference [37] devised a multiclass SVM classifier for static and transient stability assessment and classification. Reference [40] suggested a SVM classifier to predict the transient stability status using voltage variation trajectory templates. Reference [38] trained a binary SVM classifier, with combinatorial trajectories inputs, to predict the transient stability status. Reference [41] employed the SVM to rank the synchronous generators based on transient stability severity and classify them into vulnerable and nonvulnerable machines. Reference [42] proposed two SVMs, using Gaussian kernels, for classifying the post-fault stability status of the system. Reference [43] presented an SVM-based approach for transient stability detection, using post-disturbance signals, from the optimally located distributed generations. Some other relevant work dealing with SVM-based transient stability classification can be found in [44]-[51]. Based on the detailed literature review and to the best of author’s knowledge, there exists no research work on PTS which uses SVM-based SML approach, considering the uncertainties of load, faulted line, fault type, fault location (on the line), and FCT. Moreover, [52] specifically mentions the potential of SVM for online DSA, and [53]-[57] strongly indicate that ML is a promising and upcoming approach for online DSA. Thus, the main contribution of this paper is to predict PTS status using an SVM-based SML approach. As mentioned before, although, the time-domain simulation method is one of the most accurate methods to assess transient stability; it is very computationally intensive, particularly for large scale systems. Hence, this method is only suitable for offline applications. On the contrary, the direct analytical methods are comparatively fast, but requires a large number of approximations which significantly limit the model accuracy. The TEF-based methods are difficult to implement, especially due to many potential function terms of the TEF of the system. Also, these approaches require postfault data for transient stability assessment, and hence, they are not suitable for online transient stability assessment. Therefore, new approaches must be explored and applied to real-scale power systems to ensure accurate and effective online prediction of transient stability. Thus, this paper proposed an artificial intelligence-based approach for this application, and this is the main novelty and contribution of this research.

The rest of the paper is organized as follows. Section II describes various probabilistic factors associated with transient stability assessment. Section III discusses the PTS index used in this paper. Section IV provides a brief overview of SVM and its application to PTS classification problem.
Section V discusses the procedure for the proposed approach. Section VI and VII deals with the description of case study, and associated results and discussion, respectively. Section VIII describes sensitivity analysis, with respect to some important parameters/functions. Finally, Section IX concludes the paper, with a suggested direction for future research.

II. PROBABILISTIC FACTORS IN POWER SYSTEM TRANSIENT STABILITY

There are various factors which are involved in PTS assessment of power systems, such as fault type, fault location, load, and FCT. Suitable probability density functions (PDFs) are used to model these factors. The modeling approaches are described below [38]. Normally, shunt faults, such as three-phase (LLL), double-line-to-ground (LLG), line-to-line (LL) and single-line-to-ground (LG) short circuits, are considered for evaluating PTS. A probability mass functions (PMF) is normally used to model the fault type. Based on past system statistics, a usual practice is to select the probability of LLL, LL, LLG, and LG short circuits, as 0.05, 0.1, 0.15 and 0.7 respectively [22]. This paper adopts the same practice. The probability distribution of fault location on a transmission line is usually assumed to be uniform. This means that the fault can occur with equal probability at any line of the test system and at any point along the line [21]. This paper uses the same approach. The procedure of fault clearing constitutes of three stages: fault detection, relay operation and breaker operation. If the primary protection and breakers are 100% reliable, the clearing time is the only uncertain factor. A normal (Gaussian) PDF is generally used to model this time [21]. In this paper, fault is applied at 1 s and it is cleared, after a mean time of 0.9 s and standard deviation of 0.1 s (based on the normal PDF). A normal PDF was used to represent the uncertainty of loads. Let \(f(X) \) denote the PDF for individual bus loads, i.e.,

\[
f(X) = \frac{1}{\sqrt{2\pi \sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}
\]

where \(\mu \) and \(\sigma \) denotes the mean and standard deviation of the forecasted peak load, respectively.

III. QUANTIFICATION INDEX FOR PROBABILISTIC TRANSIENT STABILITY

The Transient Stability Index (TSI) was used to quantify the transient stability of a system consisting of synchronous machines [59]. This index is based on the maximum rotor angle separation between any two synchronous machines, after the fault has occurred. Mathematically, it is given by

\[
TSI = \frac{360 - \delta_{\text{max}}}{360 + \delta_{\text{max}}}, \quad \text{where } -1 < TSI < 1
\]

where \(\delta_{\text{max}} \) is the post-fault maximum rotor angle separation (in degrees) between any two synchronous machines in the system at the same time (for a fault on line \(i \)). A negative \(TSI \) value indicates that the power system is transiently unstable. This is a global index for a swift indication of the transient stability status of the system (for a fault on any line, at any point, for any FCT and for any load). Therefore, this index is used in this paper to quantify the PTS status. Let \(S_i \) represent the PTS status indicator for \(i^{th} \) iteration of MCS. Mathematically,

\[
S_i = \begin{cases}
1, & \text{if } TSI < 0 \\
0, & \text{if } TSI \geq 0
\end{cases}
\]

Therefore, if the system is transiently stable, for \(i^{th} \) Monte-Carlo (MC) sample, value of \(S_i \) will be 0; otherwise, it will be 1. This information will be used for training the SVM model.

IV. SVM: BRIEF OVERVIEW AND APPLICATION TO PROBABILISTIC TRANSIENT STABILITY PREDICTION

Support vector machine (SVM), which is also known as maximum margin classifier, is a type of SML, that can be used both in classification and regression problems. It was first introduced by Vapnik [60]-[61] and was elaborated by Schölkopf et al. [62]. SVM classifiers depend on training points, which lie on the boundary of separation between different classes, where the evaluation of transient stability is important. A decent theoretical progress of the SVM, due to its basics built on the Statistical Learning Theory (SLT) [60], made it possible to develop fast training methods, even with large training sets and high input dimensions [63]-[65]. This useful characteristic can be applied to tackle the issue of high input dimension and large training datasets in the PTS problem. The basic implementation of an SVM, commonly known as a hard margin SVM, requires the binary classification problem to be linearly separable. This is frequently not the case in practical problems, and therefore, SVM provides a kernel trick to resolve this issue. The forte of the SVM algorithm is based on the use of this kernel trick to transform the input space into a higher dimensional feature space. This permits to define a decision boundary that linearly separates the classes. The SVM algorithm attempts to determine that decision boundary or hyperplane with the highest distance from each class [38], [66]. The hyperplane can be mathematically defined as [39]

\[
w^T x + b = 0
\]

where \(w \) is the weight vector (\(w^T \) is its transpose), \(x \) is the sample feature vector, and \(b \) is a bias value. The samples that assist the algorithm to define the optimal hyperplane are those that lie closest to it, and they are known as SVs. The kernel function plays a significant role in SVM classification [67]. The kernel function is applied on each data instance to map the original non-linear data points into a higher-dimensional space in which they become linearly separable. An SVM classifier minimizes the generalization error by optimizing the relation between the number of training errors and the so-called Vapnik-Chervonenkis (VC) dimension. This is attained using the approach of structural risk minimization (SRM) which states that the classification error expectation of unseen data is bounded by the sum of a training error rate and a term that depends on the VC dimension [39]. Compared to empirical risk minimization (ERM)-based formulation (which is used by most ML algorithms, including ANN), the SRM-
based formulation allows the SVM to prevent overfitting problems, by defining an upper bound, on the expected risk. A formal theoretical bound exists for the generalization ability of an SVM, which depends on the number of training errors (t), the size of the training set (N), the VC dimension associated to the resulting classifier (h), and a chosen confidence measure for the bound itself (η) [39], [61], [68]:

$$ R < \frac{t}{N} + \sqrt{\frac{h(\ln(\frac{2N}{h}) + 1) - \ln(\frac{\eta}{4})}{N}} $$ \hspace{1cm} (5)

The risk (or classification error expectation) R represents the classification error expectation over all the population of input/output pairs, even though the population is only partially known. This risk is a measure of the actual generalization error and does not require prior knowledge of the probability distribution of the data. SLT derives inequality (5) to mean that the generalization ability of an SVM is measured by an upper limit of the actual error given by the right-hand side of (5), and this upper limit is valid with a probability of $1 - \eta$ ($0 < \eta < 1$). As h increases, the first summant of the upper bound (5) decreases and the second summant increases, such that there is a balanced compromise between the two terms (complexity and training error), respectively [39]. The SVMs used for binary classification problems are based on linear hyperplanes to separate the data, as shown in Fig. 1. The hyperplane (represented by dotted line in Fig. 1) is determined by an orthogonal vector w and a bias b, which identify the points that satisfy $(w^T x) + b = 0$. By determining a hyperplane which maximizes the margin of separation, denoted by ρ, it is instinctively anticipated that the classifier will have an improved generalization ability. The hyperplane having the largest margin on the training set can be completely determined by the points that lie closest to the hyperplane. Two such points are x_1 and x_2 as shown in in Fig. 1 (b), and they are known as SVs because the hyperplane (i.e., the classifier) is completely dependent on these vectors. Consequently, in their simplest form, SVMs learn linear decision rules as

$$ f(x) = \text{sign}(w^T x + b) $$ \hspace{1cm} (6)

so that (w, b) are determined as to correctly classify the training examples and to maximize ρ. For linearly separable data, as shown in Fig. 1, a linear classifier can be found such that the first summant of bound (5) is zero.

$$ \{x/(w,x)+ b = -1\} \setminus \{x/(w,x) + b = +1\} $$

Fig. 1. SVM (maximum margin) classifier.

It is always possible to scale w and b such that

$$ w^T x + b = \pm 1 $$ \hspace{1cm} (7)

for the SVs, with

$$ w^T x + b > +1 \text{ and } w^T x + b < -1 $$ \hspace{1cm} (8)

for non-SVs. Using the SVs x_1 and x_2 of Fig. 1 and (7), the margin ρ can be calculated as

$$ \rho = \frac{w^T (x_2 - x_1)}{||w||} = \frac{2}{||w||} $$ \hspace{1cm} (9)

where $||w||$ is the Euclidean Norm of w. For linearly separable data, the VC dimension of SVM classifiers can be evaluated as

$$ h < \min \left\{n, \frac{4D^2}{\rho^2}\right\} + 1 = \min \left\{n, \frac{D^2}{\rho^2}\right\} $$ \hspace{1cm} (10)

where n is the dimension of the training vectors and D is the minimum radius of a ball which contains the training points. Thus, the risk (5) can be reduced by lessening the complexity of the SVM, that is, by increasing the margin of separation ρ, which is equivalent to reducing $||w||$. In practice, as the problems are not probable to be detachable by a linear classifier, thus, the linear SVM can be extended to a nonlinear version by mapping the training data to an expanded feature space using a nonlinear transformation:

$$ \Phi(x) = (\phi(x),\ldots,\phi_m(x)) \in \mathbb{R}^m $$ \hspace{1cm} (11)

subject to the constraint that all training patterns are correctly classified, i.e.,

$$ y_i \cdot \{w^T \cdot \Phi(x_i) + b\} \geq 1, \quad i = 1,\ldots,N $$ \hspace{1cm} (13)

Though, contingent on the kind of nonlinear mapping (11), the samples of training data may not be linearly separable. In this case, it is not possible to find a linear classifier that satisfies all the conditions given by (12). Thus, instead of (12), a new cost function is optimized, i.e.,

$$ \min V(w,\varepsilon) = \frac{1}{2} w^T w + C \sum_{i=1}^{N} \varepsilon_i $$

$$ s.t. \quad y_i \cdot \{w^T \cdot \Phi(x_i) + b\} \geq 1 - \varepsilon_i \quad \text{for } i = 1,\ldots,N $$

$$ \varepsilon_i \geq 0 \quad \text{for } i = 1,\ldots,N $$
where N non-negative slack variables ε_i are introduced to allow training errors (i.e., training patterns for which $y_i \cdot [w^T \cdot \Phi(x_i) + b] \geq 1 - \varepsilon_i$ and $\varepsilon_i > 1$) and allow for some misclassification. By minimizing the first summand of (14), the complexity of the SVM is reduced, and by minimizing the second summand of (14), the number of training errors is decreased. C is a positive penalty factor (also known as regularization factor or soft margin parameter) which decides the tradeoff between the two terms. In case it is small, the separating hyperplane is more focused on maximizing the margin (at the expense of larger classification mistakes), while the number of misclassified points is minimized for larger C values (at the expense of keeping the margin small). The minimization of the cost function (14) leads to a quadratic optimization problem with a unique solution. The nonlinear mapping (11) is indirectly obtained by the kernel functions, which correspond to inner products of data vectors in the expanded feature space $K(a, b) = \Phi(a)^T \cdot \Phi(b), a, b \in R^n$ [39], [46], [68]. Common kernel functions include the linear, polynomial, sigmoid and Gaussian radial basis function (RBF). In general, there is no fixed criterion for selecting these kernel functions. It majorly depends on whether the data is linearly separable or not, and how many dimensions exist When the number of features is very large (depending on the data), dimensionality reduction is applied first using Principal Component Analysis (PCA) or Linear Discriminant Analysis (LDA) (linear or nonlinear kernel variants). In general, the RBF kernel is a reasonable first choice. In short, there is no way to figure out which kernel would do the best for a particular problem. The only way to choose the best kernel is to actually try out all possible kernels, and consequently, choose the one empirically performs the best. One can empirically determine the optimal kernel via experimentation. Doing so involves three major steps: (1) implementing a version of the SVM model using each kernel, (2) evaluating the SVM model’s performance with each kernel via cross validation, and (3) selecting the kernel that yielded optimal results.

The Gaussian RBF kernel generally is preferred over others because it has the ability of mapping samples nonlinearly into a higher dimensional space, and therefore, unlike linear kernel, it can tackle the scenario when the relationship between class labels and attributes is nonlinear. Although, sigmoid kernel performs like a Gaussian RBF kernel for certain parameters, but there are some parameters for which the sigmoid kernel is not the dot product of two vectors, thus, it is invalid. Moreover, as compared to polynomial kernel, it has few hyperparameters (parameters whose values are used to control the learning process) [61]. Thus, this work uses a Gaussian RBF kernel, which is mathematically given by,

$$K(a, b) = e^{-\gamma \|a-b\|^2}, \gamma > 0, \gamma = \frac{1}{2\sigma^2} \quad (15)$$

where γ denotes the kernel parameter of the SVM classifier and σ is the width of the Gaussian function.

The hyperparameters C and γ impact how sparse and easily separable the training data are in the expanded feature space. Subsequently, these parameters decide the complexity and training error rate of the resulting SVM classifier. These parameters must be optimized for achieving the best performance for the SVM classifier. The block diagram for the proposed SVM framework is shown in Fig. 2. The proposed SVM framework used has four inputs (system load, fault type, fault location and FCT), and one output (for S_5). Samples for training data were chosen using the MCS-based time domain simulation approach (described in Section V).

![Fig. 2. Framework for the proposed SVM approach (input features and corresponding output).](image)

For the PTS classification task, the first step was feature extraction, i.e., to select the most relevant input and output data for the SVM classification model. System load, fault type, fault location, and FCT were chosen as inputs, and transient stability status, S_5, was selected as the output (the binary variable to be classified as transiently stable or unstable). 500 samples were used for each line to train the SVM model, as shown in Table I. It must be mentioned that generally, there is no accepted rule of thumb to determine the number of samples for training the ML model; this typically depends on complexity of the problem, required performance level, and the ML algorithm used. As there are 16 lines in the system, thus, the total number of samples used for SVM model were 8000 (500×16). Thus, the size of the input feature matrix was 8000×4. The Gaussian RBF kernel function was used for training the SVM as there is ample nonlinearity amongst the data presented to the SVM classifier. The hyperparameters C and γ were optimized using Bayesian optimization (other approaches such as Grid search or Random search may also be used). The optimum values of C, γ, and σ were found to be 210, 0.22, and 1.5, respectively. The data presented to SVM is randomly divided in two subsets: training subset and testing subset. The K-fold cross-validation approach is used to accomplish this as this prevents overfitting while training the data. In this approach, the entire data is divided into K partitions of equal size. Training and testing are repeated, each time selecting a different partition for testing data, until all K partitions are utilized for testing, i.e., every data point gets to be in a test set exactly once and gets to be in a training set $(K-1)$ times [38]. Eventually, the average of these errors is taken as the expected prediction error. This work used the value of K as 5, i.e., in each fold, 20% data was used for testing and 80% for training.
V. PROCEDURE FOR THE PROPOSED APPROACH

The methodology for the proposed approach is described in Fig. 3. The IEEE-14 bus system was used to test and validate the proposed approach. This system has 16 transmission lines. For each line, 500 random MC samples were generated (the symbol i indicates the sample number for the MCS). It is assumed that pre-fault system topology (configuration) is fixed, i.e., there is no contingency before the fault occurrence. In the first step, the first line is selected. In the next step, MCS is initiated with 500 samples. In each sample, system load, fault type, fault location and FCT are randomly chosen (based on the respective defined PDFs, as described in Section II). The fault is created at time $t=1$ s. For each MC sample, time-domain stability simulation is run for 10 s to determine the outcome (transiently stable or unstable). This is determined based on the value of S_i, as described in Section III. These steps are repeated and MCS is performed (for 500 samples) for all the remaining lines. When the MCS is run for all the 16 lines in the network, the resulting data obtained is used as training data for the SVM classification model.

A summarized workflow of SML application for online PTS prediction is shown in Fig. 4. As illustrated, the first step deals with the offline mode. In this mode, time-domain simulations are conducted, considering the uncertainties of input variables in the form of PDFs (generally obtained from past historical observations). In the next step, these distributions are sampled to gather enough training data. For each sample, the PTS status is measured by a binary variable, say, x, which can take two labels (say, 1 for transiently unstable, and 0 for transiently stable). Therefore, the final training data consists of the PTS status labels and the corresponding input operating conditions. In the next step, this offline-based database is used for online PTS prediction. The SML model ‘learns’ the stability rules and consequently, can be used to predict the PTS status for current operating point.

VI. CASE STUDY

The IEEE 14-bus test transmission system was used to conduct the required simulations. The numerical data and parameters were taken from [69]. The single line diagram is shown in Fig. 5. It should be highlighted that the proposed methodology is applicable to any test system. As mentioned before, a normal PDF is used to define the uncertainty in system loads. The active power of each load was assigned a mean equal to the original load active power value, as given in test system data in [69], and a standard deviation equal to 10% of the mean value. All time-domain simulations are RMS simulations and are performed using DlgSILENT PowerFactory software [70]. For SML application, Classification Learner tool of MATLAB was used [71].

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Number of Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>System load</td>
<td>500</td>
</tr>
<tr>
<td>Fault type</td>
<td>500</td>
</tr>
<tr>
<td>Fault location</td>
<td>500</td>
</tr>
<tr>
<td>FCT</td>
<td>500</td>
</tr>
</tbody>
</table>
acy (), TP TN FP FN N \(\text{AUC} = \int_0^1 \text{sensitivity} \, dv \), i.e., its area under curve (AUC) as an edge AUC-TP TN FP FN N -target classes CA, and CE. As mentioned before, the value of K used in this work was 5. To verify that it is indeed the best value, a sensitivity analysis was performed. The SVM classifier was trained for various values of K, and the corresponding CA values were determined. The results obtained are shown in Fig. 8. As evident, increasing K beyond 5 does not alter the CA. Hence, K=5 is a good choice for K-fold cross-validation, for this work. This also validates the fact that K=5 and K=10 are
generally the most commonly used values for a K-fold cross-validation procedure [77]. Moreover, for $K=5$, the values of CA, CE, and AUC, for different kernel functions, are shown in Table III. As evident, Gaussian RBF kernel has the highest accuracy and minimum error. This also validates the reason of Gaussian RBF kernel being the most commonly used kernel function for SVM classification [61]. Also, Table IV displays optimal values of various hyperparameters obtained for the proposed SVM model. Table V displays the comparison of performance metrics for the proposed approach with other related research. As evident, the results obtained by the proposed approach are comparable to similar research, and hence, this validates its effectiveness for the desired application of transient stability status prediction, in the presence of uncertainties. Table VI presents a comparison of the proposed method with conventional approaches, in terms of computational performance. As evident, the proposed SVM method is quite fast in predicting the transient stability status. Hence, the approach is very useful for online application. Moreover, various recent research [78-80] has indicated the significance of using SVM for transient stability prediction.

![Confusion Matrix](image)

Fig. 6. Confusion matrix for transient stability classification performance assessment.

![ROC Curve](image)

Fig. 7. ROC curve for transient stability classification performance assessment.

![Variation of C4](image)

Fig. 8. Variation of $C4$ with K.

IX. Conclusion and Future Work

Power system transient stability is an integral part of power system planning and operation. Traditionally, it has been assessed using deterministic approach. With the increasing system uncertainties, environmental pressures of incorporating green energy, and widespread electricity market liberalization (deregulation), there is a strong need to incorporate probabilistic analysis in transient stability evaluation. Moreover, conventional approaches (direct method, time-domain simulation method, TEF approach, etc.) to assess transient stability are time consuming and hence, are not suitable for online application. ML can provide a good alternate to achieve this important goal. Hence, this paper applies an SVM-based approach to predict transient stability status, in the presence of uncertainty.

The paper highlighted the need to consider a faster method for PTS assessment and hence, proposed a binary SVM approach for predicting PTS status. In addition to uncertain system load conditions, various uncertain factors such as faulted line, fault type, fault location and FCT were considered. Time-domain simulations were used to gather the data required for training the SVM model. The TSI was used as the indicator for the PTS status. The proposed method was applied to the IEEE 14-bus system, and promising results were obtained, indicating the significance of SVM in power system PTS assessment. The results indicated that the proposed approach predicted the PTS status with an excellent accuracy, in a computationally efficient manner. This indicates the potential of SVM for online DSA, especially for large-scale power systems.

As a future work, ensemble learning, incorporating multiple learning methods, can be applied for prediction of PTS. Moreover, incorporating data from renewable energy generation sources (such as wind and solar) in the SVM training model can prove to be very useful in online DSA procedure.

<table>
<thead>
<tr>
<th>Classification Metric</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>CA</td>
<td>0.967</td>
</tr>
<tr>
<td>CE</td>
<td>0.033</td>
</tr>
<tr>
<td>AUC</td>
<td>0.991</td>
</tr>
</tbody>
</table>
TABLE III
VARIATION OF CA, CE, AUC FOR DIFFERENT KERNEL FUNCTIONS

<table>
<thead>
<tr>
<th>Kernel Function</th>
<th>CA</th>
<th>CE</th>
<th>AUC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linear</td>
<td>0.872</td>
<td>0.128</td>
<td>0.894</td>
</tr>
<tr>
<td>Polynomial (order 2)</td>
<td>0.916</td>
<td>0.084</td>
<td>0.937</td>
</tr>
<tr>
<td>Polynomial (order 3)</td>
<td>0.829</td>
<td>0.171</td>
<td>0.848</td>
</tr>
<tr>
<td>Gaussian RBF</td>
<td>0.967</td>
<td>0.033</td>
<td>0.991</td>
</tr>
</tbody>
</table>

TABLE IV
OPTIMAL HYPERPARAMETER VALUES FOR THE PROPOSED SVM MODEL

<table>
<thead>
<tr>
<th>Hyperparameter</th>
<th>Type/value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kernel function</td>
<td>RBF</td>
</tr>
<tr>
<td>Penalty Factor, C</td>
<td>210</td>
</tr>
<tr>
<td>Gamma, γ</td>
<td>0.22</td>
</tr>
<tr>
<td>Sigma, σ</td>
<td>1.5</td>
</tr>
</tbody>
</table>

TABLE V
COMPARISON OF SVM PERFORMANCE METRICS WITH RELATED RESEARCH

<table>
<thead>
<tr>
<th>Approach type</th>
<th>CA</th>
<th>CE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proposed in this paper</td>
<td>0.967</td>
<td>0.033</td>
</tr>
<tr>
<td>[38]</td>
<td>0.893</td>
<td>0.107</td>
</tr>
<tr>
<td>[45]</td>
<td>0.959</td>
<td>0.041</td>
</tr>
<tr>
<td>[72]</td>
<td>0.968</td>
<td>0.032</td>
</tr>
<tr>
<td>[81]</td>
<td>0.935</td>
<td>0.065</td>
</tr>
</tbody>
</table>

TABLE VI
COMPARISON OF PROPOSED SVM METHOD WITH TRADITIONAL METHODS

<table>
<thead>
<tr>
<th>Approach type</th>
<th>Time (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SVM (proposed in this paper)</td>
<td>0.005</td>
</tr>
<tr>
<td>Time-domain</td>
<td>1.26</td>
</tr>
<tr>
<td>EEAC</td>
<td>0.91</td>
</tr>
<tr>
<td>TEF</td>
<td>0.86</td>
</tr>
<tr>
<td>Hybrid (time-domain+TEF)</td>
<td>1.04</td>
</tr>
</tbody>
</table>

REFERENCES

Umair Shahzad was born in Faisalabad, Pakistan. In 2021, he received the Ph.D. degree in Electrical Engineering from The University of Nebraska-Lincoln, USA, as a Fulbright Scholar. Moreover, he received a B.Sc. Electrical Engineering degree from the University of Engineering and Technology, Lahore, Pakistan, and a M.Sc. Electrical Engineering degree from The University of Nottingham, England, in 2010 and 2012, respectively. His research interests include power system security assessment, power system stability, machine learning, and probabilistic methods applied to power systems.