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Abstract—This paper proposes a methodology based on system 

connections to calculate its complexity. Two study cases are 

proposed: the dining Chinese philosophers’ problem and the 

distribution center. Both studies are modeled using the theory of 

Discrete Event Systems and simulations in different contexts were 

performed in order to measure their complexities. The obtained 

results present i) the static complexity as a limiting factor for the 

dynamic complexity, ii) the lowest cost in terms of complexity for 

each unit of measure of the system performance and iii) the output 

sensitivity to the input parameters. The associated complexity and 

performance measures aggregate knowledge about the system.  

 
Index Terms—complexity, connections, discrete events systems, 

modeling, simulation.  

 

 

I. INTRODUCTION 

ystems are studied in different areas by observing their parts 

and their behavior. A system consists of elements, arranged 

in a natural or controlled manner to fulfill a certain goal. To 

Rechtin and Maier [1], a system is a collection of things or 

elements, that by working together produce results that are 

impossible to be obtained by the elements themselves 

individually. Each part interacts directly or indirectly with each 

other and performs functions on behalf of the whole. 

The systems’ behavior in time can be investigated to verify 

patterns, relationships, hierarchy and other features. Many 

systems have a high variability in their parameters. To Per Bak 

[2], such characteristic defines them as complex. This type of 

systems are non-linear, hierarchical, emerging and self-

organizing [3], i.e., they have variables that may emerge at any 

time or assume different levels of importance according to the 

system dynamics, producing a behavior that is difficult to 

predict. 

In complex systems, the whole is considered as more than 

just the sum of the parts, referring to the fact that the set of 

properties is not easily inferred from the properties of the parts 
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and the laws of their interactions [4]. In a wide range of scales, 

the variability may express itself, leading to the identification 

of the separate parts. This fact can be observed in the 

relationship between humans, who are able to recognize other 

humans because they are all different. In this context, the brain 

can be considered as the most complex system of all, because it 

can form a representation of the complex external world [2]. 

Faced with the need to quantify the complexity of systems, 

several authors have proposed different metrics. According to 

Lloyd [5], these metrics are developed to respond questions 

about the system with respect to: i) difficulty of description, ii) 

difficulty in creating or iii) degree of organization. 

The system complexity can be evaluated for its dynamic 

operation or for its a static configuration. The static complexity 

measure is independent of the simulation and is considered as a 

reference. In this work, the maximum number of active 

connections between elements of the system is adopted to 

calculate the static complexity. The dynamic complexity 

measure considers the evolution of the system over time, in 

which the number of active connections varies at every state 

change [6]. 

Events contribute to the systems’ dynamics, provoking 

changes of state [7]. During the process of simulating discrete 

events systems, the input parameters are changed and the output 

is observed. The simulation provides data to the analysis of 

parameter sensitivity, and the goal is to verify each input 

variable’s contribution to some output. According to Saltelli 

[8], the sensitivity analysis is the study of how uncertainty in 

the model can be divided to different sources of doubt in the 

inputs. 

The sensitivity analysis is relevant to the study of complexity 

because certain variables can eventually emerge and cause 

significant impact to the system. To Holland [3], this emergence 

characterizes complex systems and help distinguish such 

systems from others. 

The purpose of this paper is to present a methodology for 

measuring the static and dynamic complexities of systems, 
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using as case studies two systems modeled by discrete events. 

Section II presents the problems that underlie these systems 

modeling and Section III brings the complexity metrics. Section 

IV presents the methodology used for the computer simulation 

and the complexity measure of the proposed systems. In section 

V, the results are presented. 

II. PROBLEMS 

A. Dining Chinese Philosophers 

The Dining Chinese Philosophers problem, proposed by the 

Dutch computer scientist Edsger Dijkstra in 1965, became a 

classic representation of synchronization in Concurrent 

Programming, where there is competition for limited resources 

[9]. The problem consists of a situation in which there are five 

philosophers sitting at a circular table, there is a plate of pasta 

for each philosopher and a hashi between each pair of plates, as 

illustrated in Fig 1. 

 
 

Fig. 1.  Dining Chinese Philosophers. 

 

Each philosopher needs two hashis to eat. Thus, when a 

philosopher wants to eat, he tries to catch the hashis that are 

adjacent to his plate, one at a time. In case both are free, he starts 

to eat for a predetermined time. When he finishes eating, he 

releases the hashis on the table so other philosophers may use 

them. If only one hashi is available, he holds it and keeps 

waiting for the release of the missing one.  

This problem has features of Discrete Event Systems (DES), 

as it presents events and states that can be represented by 

discrete sets. The states of philosophers in this system are: i) 

philosophizing; ii) waiting and iii) eating. Based on the states, 

there are the following events: a) begin philosophizing; b) end 

philosophizing; c) begin waiting; d) end waiting; e) start eating; 

f) end eating. 

 

B. The Distribution Center 

The problem of the Distribution Center consists of a delivery 

logistics for requests according to the demand, which can form 

a queue. The freight for each order comes to the dock and is 

loaded into the truck by a team of four people [10]. 

The distribution process works accordingly to the following 

logical sequence: 1) requests arriving at the distribution center 

in time intervals t1; 2) requests waiting in queue while the 

resources are not available; 3) each truck staying for a time t2 

on the dock while the loading process is performed; 4) truck 

leaving to make a delivery, while dock and boots are released 

for new loading; 5) request being transported to the destination 

during a period of time t3; 6) truck returning to the distribution 

center in a time interval t4 after the delivery. After step 6, the 

empty truck is available for new deliveries. In the model, values 

t1, t2, t3, and t4 are random values given by probability 

distributions that best represent each time. 

The Distribution Center is a typical discrete event system, 

which features entities, queues, and resources. The entities are 

the requests, which are waiting in line for the availability of the 

resources: docks, trucks, and group of loaders. The set of 

discrete states concerning requests are: i) waiting in the queue; 

ii) being loaded; iii) being transported. Based on the states, it is 

determined how many resources are being used at every instant 

of time t. The events in this system are: a) receiving a new order; 

b) allocating a group of loaders to perform loading; c) starting 

to use the dock; d) allocating truck; e) starting to load truck; f) 

finishing to load truck; g) finishing to use dock; h) deallocating 

group of loaders; i) transporting request to the recipient and j) 

deallocating truck. 

III. COMPLEXITY METRIC 

Several metrics to calculate the complexity have been 

developed based on the size of the system, entropy, 

information, cost, hierarchy, organization and other criteria [5]. 

In many cases, the complexity measure is dimensionless, so it 

only makes sense if compared to another measured value in the 

system itself or in a separate system, as long as the nature of the 

analyzed systems allows comparison [11].  

Before applying the chosen complexity metric, the focus of 

analysis must be defined and a system model that objectively 

represents the various interactions of its parts must be created 

[10].  

Based on Shannon’s studies [12] about entropy in 

information exchange, some complexity metrics were 

developed [11] [13] [14] [15] [16].  Lemes [13] adapted 

Shannon modeling to measure the complexity of the system 

connections using (1): 
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where: Γ(𝑠) is the complexity of the system connections 

equivalent to the entropy in information exchange, s is the set 

of connections between elements of the system, |s| is the total 

of connections between the elements of the system, 𝑝(𝑥), ∀x ∈ 
s, is the frequency in which the connections between elements 

i and j occur. 

IV.  METHODOLOGY 

A. Proposed Metric 

The proposed method is based on Lemes’ modeling [13] in 

order to measure the complexity of real systems, but it ignores 

the exchange of information among its members. The proposed 



metric maps the active connections between entities, resources 

and queues at any given time t, expressed through the 

relationship matrix M. Thus, one can measure the static and 

dynamic complexity of any real system using (2) and (3). 
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where:  𝛾(𝑠) is the system complexity, e is  the number of 

entities that each resource can attend, nr is the number of 

resources, nq is the number of queues, p(c)i is the probability 

that the connection i occurs and 𝜌 is the number of active 

connections at the moment t, expressed by (4). 
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where: k is the number of entity states, 𝑛𝑐𝑗  is the number of 

active connections per entity at the jth state and 𝑛𝑒𝑗  is the 

number of entities at the j state. 

 

B. Model for the Dining Chinese Philosophers Problem 

The problem of the Dining Philosophers is simulated from a 

computational routine that implements the three proposed states 

in [17] for the philosophers: i) ap philosophizing; ii) aw waiting 

and iii) ae eating. To perform the simulation, it is necessary to 

define 1) the number of philosophers n; 2) the philosopher Pi 

that starts the simulation, with i = 1, 2, 3, ..., n; 3) the orientation 

of the simulation (clockwise or counterclockwise); 4) the 

amount m of periods of time t that the philosophers can stay in 

state ae; 5) the vector Tj consisted of periods of time t to the state 

ae with j = 1, 2, 3, …, m, which can be stochastically generated. 

The philosopher who is in the state ae uses two hashis.  If the 

philosopher has just one hashi, he is waiting to eat, therefore he 

is in state aw. In case the philosopher has no hashi with him, 

meaning that he is philosophizing, he in state ap. Considering 

clockwise orientation, the philosopher Pi takes the hashi 

released from philosopher Pi-1, from his right, and the other 

hashi released from philosopher Pi+1, from his left, as explained 

in (5). 
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Each philosopher Pi stays in state ae during the period of time 

given by Tj, in its j-th position, which corresponds to the j-th 

time that a philosopher assumes the state ae. When the 

philosopher is finished eating, he mandatorily switches to state 

ap and must wait, at least, a whole round through the table to 

come back to state ae. The simulation ends when the vector Tj 

is totally gone through, with j = m, and when all philosophers 

come out of the state ae. By the end of the simulation, there are 

the times tae, taw and tap during which the entity Pi kept in the 

states ae, aw and ap, respectively. The total time of simulation 

T(Pi) is the sum of times tae, taw and tap for the entity Pi. 

Two approaches are considered in the model of the Dining 

Chinese Philosophers: 1) the philosophers always want to eat 

and 2) the philosophers do not always want to eat. In the first 

one, the resources are required at all times, unlike the second 

approach, in which philosophers may decide not to eat even if 

the resources (hashis) are available. The simulation clock varies 

in a time unit, [ut], one by one, corresponding to one round. At 

the beginning of each round, the philosophers can change their 

status according to the rules of the simulation. 

In order to apply the complexity metric to the Dining Chinese 

Philosophers, it is considered that the number of active 

connections 𝜌 in this system in a given moment is provided by 

(6), where: nap, naw and nae are the number of philosophers in ap, 

ae and aw, respectively. When the philosopher is eating, two 

connections are added to the system, (one for hashi used); when 

the philosopher is waiting, one connection is added (with hashi 

that was already allocated); and when the philosopher is just 

philosophizing, they do not add any connection to the system. 

Hence, (4) assumes the following configuration: 
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The probability of occurrence for a connection in this system 

is obtained by applying (3), in which the number of entities e 

that each resource can attend is equal to two, as each hashi 

attends up to two different philosophers, and nr corresponds to 

the number of resources (hashis). Since this is a closed system, 

the number of queues nq is not taken into consideration. 

The calculation of complexity is performed based on the 

active connection at each instant of simulation. In the Dining 

Chinese Philosophers problem, it is possible to have the 

configuration represented by the relationship matrix M at some 

instant t expressed in (7), in which the columns represent the 

philosophers from P1 to P5 and the lines represent the hashis 

from H1 to H5. In this matrix, the philosophers P1 and P4 are 

philosophizing, P3 is waiting to eat and P2 and P5 are eating. 
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C. Model for the Distribution Center Problem 

Different performance measures can be chosen for the 

problem of the Distribution Center, e.g. the average waiting 

time in queue, the average time for transportation, or the 

percentage of use of the system resources. It is important to note 



that unlike the Dining Chinese Philosophers problem, the 

distribution center is an open system because new entities can 

be integrated into the system during operation. Thus, the 

number of entities (requests) and therefore, the demand for 

resources (docks, trucks and loaders) can vary over time. 

For this case, the delivery time Td of requests is considered 

as a performance measure, which is the time taken from the 

arrival of the request at the Distribution Center to the moment 

it is delivered to the recipient. This time is composed of the sum 

of the times i) waiting in queue until it gets carried away trq, ii) 

loading the request into the truck trl and iii) transporting the 

request from the Distribution Center to the recipient trt, as in 

(8): 
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The measure for complexity is calculated by (2). The active 

connections 𝜌 are mapped based in the states pq, pl and pt, which 

correspond to the queued requests, in loading process and being 

transported, respectively. The number of active connections is 

determined by (4), being that each request in state pq adds one 

connection to the system (with the request ahead of it), each 

request in state pl, adds three connections (one with the dock, 

one with the truck and another with the loaders group) and 

finally a request in state pt contributes with one connection to 

the system (with the truck). Thus, (4) results in (9). 
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where: nrq, nrl and nrt are the number of requests in queue, being 

loaded and being transported, respectively. 

The probability of occurrence for a connection in the 

Distribution Center problem in given by (3), in which the 

number of entities e that each resource can attend is equal to the 

total number of requests in the system at the instant t, 

considering that each entity (request) can be attended by any 

system resource. Therefore, e is the sum of nrq, nrl and nrt.  

In this model, nr is equal to the sum of the number of docks, 

trucks and loaders groups. The value of nq corresponds to the 

number of queues adopted in the system modeling, which is in 

this case, one queue. Considering a configuration of 6 requests 

with 2 docks, 3 trucks and 2 groups of loaders, it is possible at 

some instant t of this system, to set up the following relationship 

matrix M expressed in (10), in which the columns represent the 

requests, from R1 to R6, and the lines represent the queue (Q), 

docks (D1 and D2), trucks (from T1 to T3) and loaders group (G1 

and G2), in this order. 
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In (10), it is verified that the requests R1 and R2 are being 

transported in trucks T2 and T3, respectively, the request R3 is 

being carried by the loaders group G1 into the truck T1 parked 

in the dock D2 and the requests R4, R5 and R6 are waiting in line. 

It is noteworthy that the number of active connections can be 

computed from the matrix M 

V. RESULTS 

A. Study Case 1: Dining Philosophers 

The static and dynamic complexities were calculated from 

the model presented in Section IV-B. For calculating the static 

complexity, the maximum number of active connections was 

considered, which is only possible in closed systems. This is the 

case of the Dining Philosophers, where new entities cannot be 

added during its operation. In this model, the maximum number 

of active connections 𝜌 is equal to the number of resources.  

In order to obtain the dynamic complexity 𝛾𝑑(𝑝) during the 

simulation of the system, (2) was used at each event occurrence, 

which alters the state of the system. Therefore, the 

configuration of the system is considered at each instant of time 

t. 

For this problem, two policies were used to express the 

behavior of philosophers concerning their desire to eat. In the 

first one, philosophers want to eat whenever possible. The 

second approach considers that each philosopher may or may 

not want to eat at each round. 

The policy in which the philosophers always wants to eat was 

presented in [6], where it was observed that at every instant of 

time t, the dynamic complexity was maximum, equal to the 

static complexity 𝛾𝑠(𝑝). Thus, (11) is obtained. 
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In this approach, it is noted that the philosophers (entities) 

always use all hashis (resources) at every round. However, in 

most real systems, the resources are not fully utilized at all 

times, varying the number of active connections in time as the 

system evolves. 

For the case in which philosophers can decide whether or not 

to eat, a new simulation was performed because the number of 

connections varied. All philosophers started in the state ap, 

philosophizing, so all the hashis were free. The simulation 

clock forwarded one unit ut at a time, which corresponds to a 

round when each philosopher has its state assessed. 

The simulation was performed during 200 ut for the scenario 

with five philosophers and five hashis. At each change of state 

of the system, (2) was used to assess the dynamic complexity, 



observing the number of active connections. In Fig. 2, it is noted 

the behavior of the system relative to the static complexity 

𝛾𝑠(𝑝),  dynamic 𝛾𝑑(𝑝) and average 𝛾𝑎(𝑝). 

 

 
Fig. 2.  Static, dynamic and average complexities in the Dining Chinese 

Philosophers problem. 

 

In Fig. 2, static and average complexities were approximately 

1.66 and 1.42, respectively. The dynamic complexity varied 

during the simulation process, reaching the maximum value in 

few instants. As each philosopher could choose to eat or not, 

the number of active connections in the system changed every 

round. It was also noted also that dynamic complexity has a 

ceiling limit defined by the value of the static complexity. 

Another observation can be made regarding the mode values, 

being approximately: 0.38; 0.68; 1 and 1.35. The repeated 

values are repeated are an indicative of the number of resources 

used. 

 

B. Study Case 2: Distribution Center 

The model of the Distribution Center, presented in Section 

IV-C, was simulated based on the following operation 

dynamics: 1) the arrival of the requests happens in interval of 

time t1 with mean average of 120 minutes, according to an 

exponential distribution;  2) the loading process of each truck 

lasts a certain time interval t2, following a normal distribution 

with mean value of 100 minutes and standard deviation of 30 

minutes;  3) when a truck leaves to delivery, the dock and the 

loaders group are released to a new loading process; 4) the 

transportation of each request to the recipient is performed in a 

period of time t3, evenly distributed from 120 to 240 minutes; 

5) after delivery, the empty truck takes an amount of time t4 to 

return to the Distribution Center, and t4 follows the same 

probabilistic distribution of t3. 

The number of docks used in the simulation ranges from 1 to 

10, the amount of trucks, ranges 1 to 15, and the number of 

loaders groups ranges 1 to 10. Therefore, there are 1,500 

different scenarios, obtained by combining the amounts of 

resource values. The simulation was performed for 180 days for 

each scenario, considering 24 daily hours of operation and that 

every truck is loaded with only one request at a time. In the 

1,500 simulated scenarios, the delivery time Td in minutes and 

the complexity 𝛾(𝑑) of the system were calculated. 

The normalized values of Td and 𝛾(𝑑) for all simulation 

scenarios are presented in Fig. 3. As the simulation is the 

combination of resources, docks, trucks and loaders groups, in 

Fig. 3 the peaks of Td (in blue) correspond to the combinations 

in which they had only one truck. At every change in the 

number of docks, a truck was used for 10 scenarios, leading to 

higher values of Td and 𝛾(𝑑) (in red). The oscillations that occur 

between the values 0.1 and 0.3 of  𝛾(𝑑) are derived from 

changes in the number of trucks, indicating greater sensitivity 

in this system parameter. 

Table I has some of the shortest delivery time values Td 

obtained in the simulation. By analyzing Fig. 3, it is possible to 

see that for values of Td close to zero, there are several system 

configurations that result in the same value of Td. However, 

Table I presents the five scenarios with the lowest complexity 

values found for the five smallest times Td. 

 
TABLE I 

SCENARIOS WITH SMALLEST DELIVERY TIME AND CORRESPONDENT 

COMPLEXITY 

 

 
Fig. 3.  Relationship between delivery time and complexity. 

 

The smallest complexity that was found in the 1500 scenarios 

is 𝛾(𝑑) = 0.2697, which corresponds to the third smallest 

delivery time and to the scenario with the maximum number of 

available resources, as disposed in Table I. The worst delivery 

time Td was 340 times bigger than the smallest time occurred in 

100 different scenarios. That is illustrated in the peaks of Fig. 

3, where each peak contains 10 scenarios. The biggest 

complexity was 𝛾(𝑑) = 2.7906, which relates to the worse 

delivery time since the calculation for both the complexity and 

delivery time considers the permanence of the requests in line. 

As each request in queue corresponds to one connection, the 

Td 𝛾(𝑑) Docks Trucks L. Groups 

276.9357 0.2963 10 15 6 

276.9569 0.3038 6 14 10 
277.0154 0.2697 10 15 10 

277.0368 0.2821 9 14 10 

277.0613 0.3041 5 15 10 



longer the queue, the bigger will be the time Td and the 

complexity 𝛾(𝑑). 

It was noted that the value 𝛾(𝑑) is intrinsically related to the 

configuration of the system. By putting the results from the 

1500 scenarios in descendant order of 𝛾(𝑑), among the five 

highest values, there is Td ≈815. This represents a value close 

to 3 times the smallest Td that was found, as displayed in Table 

II. It is verified that for Td = 815.7777, approximately 84% 

fewer resources were used when compared to the scenario of 

smallest Td.  

Considering RC in (12) and that 𝛾(𝑑) is calculated from the 

connections, RC contains the relationship between time and the 

configuration of the system. 
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TABLE II 

RELATIONSHIP BETWEEN THE DELIVERY TIME AND THE COMPLEXITY 

 

Table II displays the values found for RC. It is noted that the 

lowest value refers to the time of 815.7777, whose scenario 

presented a reduced amount of resources. Even so, the 

efficiency of the system was 115 times greater than the worst 

case and only 3 times smaller than in the best case. This shows 

that the use of resources was optimized, as the ratio value RC 

indicates the lowest cost in terms of complexity for each minute 

of permanence of the request in the system. 

High complexity values may reflect significant sizes of the 

queue if the delivery time is high. However, high complexity 

can also be indicative of optimal settings for the system. 

Therefore, the number of active connections observed in the 

calculation of complexity can express both the queue formation 

and the use of resources for loading and transportation requests. 

Thus, it becomes necessary to use RC to check if the high value 

of complexity is indicative of queue or of full operation, as 

described in (13): 
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C. Sensitivity Analysis of Distribution Center 

This case study aims to confirm the hypothesis that the 

truck parameter has the largest sensitivity. From the 

simulated results, the following input parameters were 

analyzed: dock, truck, and loaders group. Delivery time and 

complexity were considered as output parameters. 

The following values were considered: 5 docks, 7 trucks 

and 5 loaders groups. These values were chosen because they 

 

correspond to the average points of the following resource 

ranges: 1 to 10 docks, 1 to 15 trucks and 1 to 10 groups of 

loaders. 

In Fig. 4 and Fig. 5, each parameter was varied from its 

base value of -100% to 100%, according to a univariate 

analysis. Fig. 4 represents the relation between the amount of 

resources and delivery time, and Fig. 5 represents the relation 

between resources and complexity. 

 
Fig. 4.  Changes in multiple parameters (resources) for a single output 

variable (time delivery). 

 

 
Fig. 5.  Changes in multiple parameters (resources) for a single output 

variable (complexity). 

 

It can be observed that the truck parameter has the largest 

sensitivity in the Distribution Center, especially in the 

interval between -85.7% to 28.6% of its base value. Fig. 5 

shows that the curve related to the truck resource has the 

largest distance from the base (dotted) line, which indicates 

the largest sensitivity in the analyzed scenarios. 

This analysis reflects the fact that the truck has a larger 

demand for resources, because it is utilized during the states 

where the order is being i) loaded and ii) transported, 

differently from other resources that are requested only when 

the order is being loaded. 

Td 𝛾(𝑑) RC Docks Trucks L. Groups 

276.9357 0.2963 934.6463 10 15 6 

291.6034 0.4083 714.1128 2 11 7 
297.8970 0.5892 505.5827 3 7 2 

322.1149 0.4690 686.8121 2 6 9 

815.7777 2.0263 402.5947 1 3 1 



VI. CONCLUSION 

This work presented a methodology for measuring the static 

and dynamic complexity of systems. The presented metric can 

be applied in real systems, provided that they are modeled in 

terms of events and states that express the existing connections. 

Static complexity was calculated only in the Dining 

Philosophers problem because it is a closed system. This 

measurement indicated the maximum complexity of the system, 

upwardly limiting the dynamic complexity. In the Distribution 

Center problem, it was found that the complexity associated 

with the performance measure provides knowledge about the 

system. The lowest value of the relationship between delivery 

time and complexity was in a system configuration that showed 

high complexity, although the demand was met with fewer 

resources. The truck resource presented the largest sensitivity, 

causing the highest impact on the system when its quantity is 

limited. The presented complexity metric can support decision-

making policies related to resource management, optimization 

processes (as a constraint or goal), security policies, or 

appreciation of systems. 
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