### Prediction of Probabilistic Transient Stability Using Support Vector Machine

#### Abstract

#### Full Text:

PDF#### References

M. P. Bhavaraju, R. Billinton, R. E. Brown, J. Endrenyi, W. Li, A. P. Meliopoulos, and C. Singh, “IEEE Tutorial on electric delivery system reliability evaluation,” in Proc. IEEE Power Energy Soc. Gen. Meet., 2005, pp. 68-78.

P. Kundur, J. Paserba, V. Ajjarapu, G. Andersson, A. Bose, C. Canizares, N. Hatziargyriou, D. Hill, A. Stankovic, C. Taylor, T. V. Cutsem, and V. Vittal, “Definition and classification of power system stability IEEE/CIGRE joint task force on stability terms and definitions,” IEEE Trans. Power Syst., vol. 19, no. 3, pp. 1387-1401, Aug. 2004.

A. M. A. Haidar, M. W. Mustafa, F. A. F. Ibrahim, and I. A. Ahmed, “Transient stability evaluation of electrical power system using generalized regression neural networks,” Appl. Soft Comp., vol. 1, no. 4, pp. 3558-3570, Jun. 2011.

A. L. Bettiol, A. Souza, J. L. Todesco, and J. R. Tesch, “Estimation of critical clearing times using neural networks,” in Proc. IEEE Bologna Pow. Tech Conf., 2003, pp. 1-6.

A. Karami, “Power system transient stability margin estimation using neural networks,” Int. J. Electr. Power Energy Syst., vol. 33, no. 4, pp. 983-991, May 2011.

M. A. Pai, Energy Function Analysis for Power System Stability. Boston, MA, USA: Kluwer, 1989.

A. A. Fouad and V. Vittal, Power System Transient Stability Analysis Using the Transient Energy Function Method. Upper Saddle River, NJ, USA: Prentice-Hall, 1992.

Y. Xue, T. V. Cutsem, and M. Ribbens-Pavella, “Extended equal area criterion justifications, generalizations, applications,” IEEE Trans. Power Syst., vol. 4, no. 1, pp. 44-52, Feb. 1989.

L. D. Colvara, “Stability analysis of power systems described with detailed models by automatic method,” Int. J. Electr. Power Energy Syst., vol. 31, no. 4, pp. 139-145, May 2009.

H. Sawhney and B. Jeyasurya, “A feed-forward artificial neural network with enhanced feature selection for power system transient stability assessment,” Elect. Power Syst. Res., vol. 76, no. 12, pp. 1047-1054, Aug. 2006.

J. G. Slootweg and W. L. Kling, “Impacts of distributed generation on power system transient stability,” in Proc. IEEE Power Energy Soc. Gen. Meet., 2002, pp. 862-867.

A. M. Azmy and I. Erlich, “Impact of distributed generation on the stability of electrical power system,” in Proc. IEEE Power Energy Soc. Gen. Meet., 2005, pp. 1056-1063.

A. Khosravi, M. Jazaeri, and S. A. Mousavi, “Transient stability evaluation of power systems with large amounts of distributed generation,” in Proc. Intl. Uni. Power Eng. Conf., 2010, pp. 1-5.

X. Zhao and J. Zhou, “Probabilistic transient stability assessment based on distributed DSA computation tool,” in Proc. PMAPS., 2010, pp. 685-690.

R. Billinton and P. R. S. Kuruganty, “Probabilistic assessment of transient stability in a practical multimachine system,” IEEE Trans. Power App. Syst., vol. PAS-100, no. 7, pp. 3634–3641, Jul. 1981.

Y.-Y. Hsu and C. Chung-Liang, “Probabilistic transient stability studies using the conditional probability approach,” IEEE Trans. Power Syst., vol. 3, no. 4, pp. 1565–1572, Nov. 1988.

E. Vaahedi, W. Li, T. Chia, and H. Dommel, “Large scale probabilistic transient stability assessment using B.C. Hydro’s on-line tool,” IEEE Trans. Power Syst., vol. 15, no. 2, pp. 661–667, May 2000.

P. M. Anderson and A. Bose, “A probabilistic approach to power system stability analysis,” IEEE Trans. Power App. Syst., vol. PAS-102, no. 8, pp. 2430–2439, Aug. 1983.

K. J. Timko, A. Bose, and P. M. Anderson, “Monte Carlo simulation of power system stability,” IEEE Trans. Power App. Syst., vol. PAS-102, no. 10, pp. 3453–3459, Oct. 1983.

W. Li, “Probabilistic transient stability assessment,” in Risk Assessment of Power Systems: Models, Methods, and Applications. New York, NY, USA: Wiley-IEEE Press, 2014.

P. N. Papadopoulos and J. V. Milanović, “Probabilistic framework for transient stability assessment of power systems with high penetration of renewable generation,” IEEE Trans. Power Syst., vol. 32, no. 4, pp. 3078-3088, Jul. 2017.

M. Abapour and M. Haghifam, “Probabilistic transient stability assessment for on-line applications,” Int. J. Electr. Power Energy Syst., vol. 42, no. 1, pp. 627-634, Nov. 2012.

J. Fang, W. Yao, J. Wen, S. Cheng, Y. Tang, and Z. Cheng, “Probabilistic assessment of power system transient stability incorporating SMES,” Phy. C: Supercond., vol. 484, pp. 276-281, Jan. 2013.

S. O. Faried, R. Billinton, and S. Aboreshaid, “Probabilistic evaluation of transient stability of a power system incorporating wind farms,” IET Ren. Power Gen., vol. 4, no. 4, pp. 299-307, Jul. 2010.

S. O. Faried, R. Billinton, and S. Aboreshaid, “Probabilistic evaluation of transient stability of a wind farm,” IEEE Trans. Energy Convers., vol. 24, no. 3, pp. 733-739, Sep. 2009.

R. Billinton and P. R. S. Kuruganty, “Probabilistic considerations in transient stability assessment,” Canad. Electr. Eng. J., vol. 4, no. 2, pp. 26-30, Apr. 1979.

L. Shi, S. Sun, L. Yao, Y. Ni, and M. Bazargan, “Effects of wind generation intermittency and volatility on power system transient stability,” IET Ren. Power Gen., vol. 8, no. 5, pp. 509-521, Jul. 2014.

D. Han, J. Ma, A. Xue, T. Lin, and G. Zhang, “The uncertainty and its influence of wind generated power on power system transient stability under different penetration,” in Proc. Int. Conf. Power Syst. Tech., 2014, pp. 675-680.

M. Al-Sarray, H. Mhiesan, M. Saadeh ,and R. McCann, “A probabilistic approach for transient stability analysis of power systems with solar photovoltaic energy sources,” in Proc. GreenTech, 2016, pp. 159-163.

P. Ju, H. Li, C. Gan, Y. Liu, Y. Yu, and Y. Liu, “Analytical assessment for transient stability under stochastic continuous disturbances,” IEEE Trans. Power App. Syst., vol. 33, no. 2, pp. 2004-2014, Mar. 2018.

D. J. Sobajic and Y. Pao, “Artificial neural-net based dynamic security assessment for electric power systems,” IEEE Trans. Power App. Syst., vol. 4, no. 1, pp. 220-228, Feb. 1989.

M. Djukanovic, D. J. Sobajic, and Y. Pao, “Neural-net based unstable machine identification using individual energy functions,” Int. J. Electr. Power Energy Syst., vol. 13, no. 5, pp. 255-262, Oct. 1991.

Y. Pao and D. J. Sobajic, “Combined use of unsupervised and supervised learning for dynamic security assessment,” IEEE Trans. Power App. Syst., vol. 7, no. 2, pp. 878-884, May 1992.

M. S. Ibrahim, W. Dong, and Q. Yang, “Machine learning driven smart electric power systems: Current trends and new perspectives,” Appl. Energy, vol. 272, pp. 1-19. Aug. 2020.

R. Saravanan and P. Sujatha, “A state of art techniques on machine learning algorithms: a perspective of supervised learning approaches in data classification,” in Proc. ICICCS, 2018, pp. 945-949.

T. S. Dillon, and D. Niebur, Neural Networks Applications in Power Systems. Leicestershire, UK: CRL Publishing, 1996.

S. Kalyani and K. S. Swarup, “Classification and assessment of power system security using multiclass SVM,” IEEE Trans. Syst., Man, Cybern A., Syst., Humans, vol. 41, no. 5, pp. 753-758, Sep. 2011.

D. You, K. Wang, L. Ye, J. Wu, and R. Huang, “Transient stability assessment of power system using support vector machine with generator combinatorial trajectories inputs”, Int. J. Electr. Power Energy Syst., vol. 44, no. 1, pp. 318-325, Jan. 2013.

L. S. Moulin, A. P. A. da Silva, M. A. El-Sharkawi, and R. J. Marks, “Support vector machines for transient stability analysis of large-scale power systems,” IEEE Trans. Power App. Syst., vol. 19, no. 2, pp. 818-825, May 2004.

A. D. Rajapakse, F. Gomez, K. Nanayakkara, P. A. Crossley, and V. V. Terzija, “Rotor angle instability prediction using post-disturbance voltage trajectories,” IEEE Trans. Power App. Syst., vol. 25, no. 2, pp. 947-956, May 2010.

B. P. Soni, A. Saxena, V. Gupta, and S. L. Surana, “Assessment of transient stability through coherent machine identification by using least-square support vector machine”, Mod. Simul. Eng., vol. 2018, pp. 1-18, May 2018.

F. R. Gomez, A. D. Rajapakse, U. D. Annakkage, and I. T. Fernando, “Support vector machine-based algorithm for post-fault transient stability status prediction using synchronized measurements,” IEEE Trans. Power App. Syst., vol. 26, no. 3, pp. 1474-1483, Aug. 2011.

P. Pavani and S. N. Singh, “Support vector machine based transient stability identification in distribution system with distributed generation,” Electr. Power Comp. Syst., vol. 44, no. 1, pp. 60-71, Nov. 2015.

A. E. Gavoyiannis, D. G. Vogiatzis, D. R. Georgiadis, and N. D. Hatziargyriou, “Combined support vector classifiers using fuzzy clustering for dynamic security assessment,” in Proc. IEEE Power Energy Soc. Gen. Meet., 2001, pp. 1281-1286.

S. Ye, X. Li, X. Wang, and Q. Qian, “Power system transient stability assessment based on adaboost and support vector machines,” in Proc. Asia-Pacific Power Ener. Eng. Conf., 2012, pp. 1-4.

L. S. Moulin, A. P. A. da Silva, M . A. El-Sharkawi, and R. J. Marks, “Neural networks and support vector machines applied to power systems transient stability analysis,” Int. J. Eng. Intel. Syst. Elect. Eng. Comm., vol. 9, no. 4, pp. 205-211, Nov. 2001.

N. I. A. Wahab, A. Mohamed, and A. Hussain, “Transient stability assessment of a power system using PNN and LS-SVM methods,” J. Appl. Sci., vol. 7, no. 21, pp. 3208-3216, 2007.

B. D. A. Selvi and N. Kamaraj, “Investigation of power system transient stability using clustering based support vector machines and preventive control by rescheduling generators,” in Proc. ICTES, 2007, pp. 137-142.

N. G. Baltas, P. Mazidi, J. Ma, F. A. Fernandez, and P. Rodriguez, “A comparative analysis of decision trees, support vector machines and artificial neural networks for on-line transient stability assessment,” in Proc SEST, 2018, pp. 1-6.

M. Arefi and B. Chowdhury, “Ensemble adaptive neuro fuzzy support vector machine for prediction of transient stability,” in Proc. NAPS, 2017, pp. 1-6.

E. A. Frimpong, P. Y. Okyere, and J. Asumadu, “Prediction of transient stability status using Walsh-Hadamard transform and support vector machine,” in Proc. IEEE PES PowerAfrica, 2017, pp. 301-306.

B. D. A. Selvi and N. Kamaraj, “Support vector regression machine with enhanced feature selection for transient stability evaluation,” in Asia-Pacific Pow. and Energy Eng. Conf., 2009, pp. 1-5.

A. Sabo and N. I. A. Wahab, “Rotor angle transient stability methodologies of power systems: a comparison,” in IEEE Student Conf. on Res. and Dev., 2019, pp. 1-6.

W. Li and J. Zhou, “Probabilistic reliability assessment of power system operations,” Electr. Power Comp. Syst., vol. 36, no. 10, pp. 1102-1114, Sep. 2008.

J. L. Cremer and G. Strbac, “A machine-learning based probabilistic perspective on dynamic security assessment,” Int. J. Electr. Power Energy Syst., vol. 128, pp. 1-15, Jun. 2021.

H. Yuan, J. Tan, and Y. Zhang, “Machine learning-based security assessment and control for bulk electric system operation,” NREL, Feb. 2020. [Online]. Available:

https://www.nrel.gov/docs/fy21osti/76089.pdf

T. Zhang, M. Sun, J. L. Cremer, N. Zhang, G. Strbac, and C. Kang, “A confidence-aware machine learning framework for dynamic security assessment,” IEEE Trans. Power Syst., pp. 1-14, Feb. 2021.

K. Jayashree and K. S. Swarup, “A distributed computing environment for probabilistic transient stability analysis,” in 16th Nat. Power Syst. Conf., 2010, pp. 329-335.

P. N. Papadopoulos and J. V. Milanović, “Impact of penetration of non-synchronous generators on power system dynamics,” in Proc. IEEE Eindhoven Power Tech., 2015, pp. 1-6.

V. Vapnik, Statistical Learning Theory. New York, NY, USA: John Wiley & Sons, 1998.

V. Vapnik, The Nature of Statistical Learning Theory. New York, NY, USA: Springer-Verlag, 1995.

B. Scholköpf, C. Burges, and A. Smola, Advances in Kernel Methods—Support Vector Learning. Cambridge, MA, USA: MIT Press, 1999.

E. Osuna, R. Freund, and F. Girosi, “Training support vector machines: au application to face detection,” in Proc. CVPR, 1997, pp. 1-8.

T. Joachims, “Making large-scale SVM learning practical,” in Advances in Kernel Methods - Support Vector Learning. Cambridge, MA, USA: MIT Press, 1998.

N. Cristianini and J. Shawe-Taylor, An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods. Cambridge, UK: Cambridge University Press, 2000.

G. N. Baltas, P. Mazidi, F. Fernandez, and P. Rodríguez, “Support vector machine and neural network applications in transient stability,” in Proc. ICRERA, 2018, pp. 1010-1015.

C. Savas and F. Dovis, “The impact of different kernel functions on the performance of scintillation detection based on support vector machines,” Sensors, vol. 19, no. 23, pp. 1-16, Nov. 2019.

L. S. Moulin, A. P. A. da Silva, M. A. El-Sharkawi, and R. J. Marks, “Support vector and multilayer perceptron neural networks applied to power systems transient stability analysis with input dimensionality reduction,” in Proc. IEEE Power Energy Soc. Gen. Meet., 2002, pp. 1308-1313.

Power Systems Test Case Archive. [Online]. Available: http://www.ee.washington.edu/research/pstca/pf14/pg_tca14bus.htm

DIgSILENT PowerFactory User Manual, DIgSILENT GmbH, 2018. [Online]. Available: https://www.digsilent.de/en/downloads.html

Classification Learner. [Online]. Available: https://www.mathworks.com/help/stats/classificationlearner-app.html

N. I. A. Wahab, A. Mohamed, and A. Hussain, “Fast transient stability assessment of large power system using probabilistic neural network with feature reduction techniques,” Exp. Syst. Appl., vol. 38, no. 9, pp. 11112-11119, Sep. 2011.

Using the ROC curve to analyze a classification model. [Online]. Available: http://www.math.utah.edu/~gamez/files/ROC-Curves.pdf

C. Sammut and G. I. Webb, Encyclopedia of Machine Learning. New York, NY, USA: Springer, 2011.

S. Karamizadeh, S. M. Abdullah, M. Halimi, J. Shayan and M. J. Rajabi, “Advantage and drawback of support vector machine functionality,” in International Conf. on Comput., Commun., and Contr. Tech., 2014, pp. 63-65.

L. Duchesne, E. Karangelos, and L. Wehenkel, “Recent developments in machine learning for energy systems reliability management,” Proc. IEEE, vol. 108, no. 9, pp. 1656-1676, Sep. 2020.

J. Brownlee, A gentle introduction to k-fold cross-validation, 2018. [Online]. Available: https://machinelearningmastery.com/k-fold-cross-validation/

C. Wang and F. Liu, “An improved support vector machine method for transient stability assessment in bulk power grid,” in Proc. IEEE Sustain. Power and Energy Conf., 2020, pp. 2423-2428.

Q. Wang, C. Pang, and H. Alnami, “Transient stability assessment of a power system using multi-layer SVM method,” in Proc. IEEE Texas Power and Energy Conf., 2021, pp. 1-5.

C. Wang, S. Li, C. Lin, and H. Chen, “Transient stability assessment of power system based on enhanced projection twin SVM,” in Proc. IEEE Int. Conf. on Digit. Twins and Parallel Intell., 2021, pp. 148-151.

E. M. Voumvoulakis, A. E. Gavoyiannis, and N. D. Hatziargyriou, “Application of machine learning on power system dynamic security assessment,” in Proc. Int. Conf. on Intell. Systems Appl. to Power Syst., 2007, pp. 1-6.

DOI: http://dx.doi.org/10.22149/teee.v4i1.144

### Refbacks

- There are currently no refbacks.

Copyright (c) 2022 Umair Shahzad

This work is licensed under a Creative Commons Attribution 4.0 International License.